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Characterizing the Increase of the Residual Order
under Blowup in Positive Characteristic

by

Herwig Hauser and Stefan Perlega

Abstract

In contrast to the characteristic-zero situation, the residual order of an ideal may increase
in positive characteristic under permissible blowups at points of the exceptional divisor
where the order of the ideal has remained constant. The specific situations where this
happens are described explicitly.
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§1. Introduction

To prove embedded resolution of singularities in characteristic zero for a reduced

subscheme X of a regular ambient scheme W equipped with a normal crossings

divisor D, one typically associates to every point a of X a local invariant invaX

measuring the complexity of the singularity of X at a and the position of X with

respect to D. The invariant consists of a string of nonnegative integers, is upper

semicontinuous and decreases lexicographically when X is blown up along the

center Z defined as the locus of points where invaX attains its maximal value.

This is done in a way such that Z is regular and has normal crossings withD. As the

invariant varies in the well-ordered set (NN , lex) and its minimal value corresponds

to a regular point a at which X has normal crossings with D, the resolution of X

is obtained by induction [Hir64, Vil89, Vil92, BM97, EH02, Cut04, W lo05, Kol07].

For the first component of invaX the simplest choice is the order orda J of

the defining ideal J of X in W . Blowing up a regular center contained in the

associated equimultiple locus of J , the order does not increase, orda′ J
′ ≤ orda J ,
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for all points a′ in the weak transform X ′ of X above a. At a point a′ where the

order remains constant, the second component of invaX comes into play. Leaving

aside transversality issues of Z with D, it is (usually) defined as the order of the

coefficient ideal K of J at a with respect to a hypersurface of maximal contact

V , less the exceptional multiplicity of K. This numeral does not depend on the

choice of the hypersurface and is again upper semicontinuous along the strata

defined by the order of J . It is thus well suited to form the second component of

invaX. Blowing up a regular center Z inside the top loci of the order and of the

order of the coefficient ideal, the second component does not increase whenever

the first remains constant. From this point on, the argument is repeated until, by

exhaustion of dimensions, a decrease of the invariant under blowup is established.

This approach to resolution has several drawbacks in positive characteristic:

First, hypersurfaces of maximal contact no longer exist; possible substitutes are

hypersurfaces of weak maximal contact as introduced in [EH02, Hau03, Hau10].

These are defined as regular hypersurfaces maximizing the order of the coefficient

ideal (in characteristic zero, the maximum can be realized by a hypersurface of

maximal contact.) This maximum will be called the residual order of J at a (the

name “residual order” was introduced by Hironaka for the situation in positive

characteristic in [Hir12]). Secondly, the residual order is no longer upper semicon-

tinuous, so its top locus need not be closed; extra care has to be taken. Finally,

even if centers are chosen appropriately, the residual order may still go up un-

der blowup at points where the order of the ideal J has remained constant. This

increase is also known as the “kangaroo phenomenon”. It destroys the induction

argument.

In view of these difficulties, two approaches are plausible: either to reject

the residual order as a valuable resolution invariant in positive characteristic and

to search for new invariants, an option that has been undertaken with a certain

success by several authors [Hir84, Cos87, Cos91, Vil07, Kaw07, KM10], or to try

to understand better the circumstances where the residual order behaves badly in

order to develop an exit strategy for the obstructions. This is the proposal we wish

to pursue in the present paper.

In this spirit, the situations where an increase of the residual order occurs

under blowup with permissible choices of centers will be investigated in detail.

It turns out that in order to produce an increase, the defining equations of X

in W must satisfy quite restrictive conditions: The (weighted) initial forms of

minimal order of the elements of J have a unique form (up to constant factors and

coordinate changes), and are actually powers of purely inseparable polynomials.

Their logarithmic Hasse derivatives have a specific shape, and the exceptional
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multiplicities of the coefficient ideal K of J satisfy an explicit arithmetic inequality.

These three conditions are satisfied simultaneously only in very special cases.

During the proof of these facts, we extend Moh’s bound on the possible in-

crease of the residual order to non-hypersurfaces and not necessarily purely insep-

arable power series [Moh87]. The upshot of the results is as follows (see Section 3

for the precise statements):

Theorem. Let J be an ideal of W of order c at a, with coefficient ideal K of

order o with respect to a hypersurface of weak maximal contact. Assume that the

residual order of J with respect to a given normal crossings divisor D increases

under permissible blowup at a point a′ where c has remained constant. Then c is

a multiple m · pe of a power of the characteristic p, o is a multiple w · c! of c!,

the weighted initial form with respect to w of elements f of J of minimal weighted

order is a power inw(f) = (zc + F (x))m, with F a homogeneous polynomial of

degree w · pe in variables x1, . . . , xn, not a peth power, and with a specific shape

xp
`

k ∂xp`

k

F of the logarithmic Hasse derivative. Here, ` < e is maximal so that F is

a p`th power.

Choosing xi subordinate to D and factorizing F maximally into F = xr · G,

the residues modulo p`+1 of the exceptional exponents ri satisfy
∑
ri ≤ (b − 1) ·

p`+1, where the sum ranges over those exceptional components which are lost when

passing from a to a′, and where b is the number of ri 6≡ 0 modulo p`+1 among them.

In the above situation, the residual order of J increases at most by c!
p .

Various other notable approaches to the resolution problem in positive char-

acteristic can be found in [Abh56, Gir75, Hir84, Cos87, Cos91, Moh96, Cut04,

Cut11, Hau04, HW14, Vil07, BV13, Kaw07, KM10].

§2. Setting

The concepts and constructions that are successfully used to prove the embedded

resolution of singularities over fields of characteristic zero require some amend-

ments for their characteristic-free definition. It remains an open problem whether

these will suffice to give a proof of resolution in positive characteristic and arbitrary

dimension.

We shall work with complete regular local rings R = (R,mR) of dimension

n + 1 over an algebraically closed field K, and of residue field R/mR
∼= K. By

Cohen’s structure theorem, R is a formal power series ring in n+ 1 variables over

K. It should be thought of as the completion of the local ring of some regular

noetherian scheme W over K at a closed point a, and ideals J of R as defining

the formal neighborhood at a of a closed subscheme X of W . Typically, a regular
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system of parameters (z, x) = (z, x1, . . . , xn) will be chosen, with a distinguished

parameter z. We then often fix a ring inclusion ρ : R/(z) ∼= Q ⊂ R providing

a section of the projection R → R/(z), for some subring Q of R. The induced

isomorphism R ∼= Q[[z]] will be used frequently.

The order of an ideal J in R is defined as ord J = ordmR
J = sup{k ∈ N, J ⊂

mk
R}. If P is a prime ideal of R, we define the order ordP J of J with respect to

P as the order of J · RP in the localization RP . For regular ideals P , it equals

sup{k ∈ N, J ⊂ P k}. A closed subscheme Z = V (P ) of Spec(R) is said to be

contained in the equimultiple locus of J if ordP J = ord J holds.

The initial form in(f) of an element f ∈ R is the homogeneous polynomial

of lowest degree of the power series expansion of f with respect to the mR-adic

filtration of R. If z, x1, . . . , xn are given regular parameters in R and w ∈ Q is a

rational number ≥ 1, we define for f ∈ R with expansion f(z, x) =
∑
i≥0 fiz

i and

coefficients fi ∈ K[[x1, . . . , xn]] the weighted order ordw f of f with respect to the

weight vector (w, 1, . . . , 1) as the minimum of the values wi+ ord fi, the order of

fi being taken in K[[x1, . . . , xn]]. It clearly depends only on the choice of z. The

weighted initial form inw(f) of f with respect to the weight vector (w, 1, . . . , 1)

(and the parameters (z, x)) is then defined as the sum inw(f) =
∑

in(fi)z
i,

where the sum ranges over those i for which the minimal value of wi + ord fi is

attained.

Let π : R→ R′ be a completed local blowup ofR, with regular center Z = V (P )

in W = Spec(R), for some ideal P of R and a complete regular local ring R′.

By this we understand that R′ is the completion of a local ring OW ′,a′ where

W ′ = Proj(⊕i≥0P i) is the blowup of W in Z, a′ ∈ W ′ is a closed point and

π : R → R′ is the induced map of complete local rings. As R and Z are regular,

R′ is again regular, and actually isomorphic to R. Occasionally we shall identify

R′ with R.

The weak transform of an ideal J of R under π is defined as the (unique) ideal

J ′ of R′ so that

π(J) ·R′ = xordP J
1 · J ′,

where x1 ∈ R′ defines the exceptional component E of π in Spec(R′). It is well

known that under blowups in regular centers contained in the equimultiple locus

of J the order of J does not increase when passing to J ′ ([Hau14]).

Define the coefficient ideal K = coeffV (J) of J with respect to a regular

hypersurface V = V (z) in Spec(R) and a section ρ : R/(z) ∼= Q ⊂ R of R→ R/(z)

as the ideal of Q defined by

coeffV (J) =
∑
i<c

(fi, f ∈ J)
c!

c−i ,
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where c = ord J and elements f ∈ J are expanded as series f =
∑
i≥0 fiz

i in

Q[[z]], with coefficients fi in Q. The coefficient ideal depends on V and ρ, but not

on the choice of the parameter z defining V . By abuse of notation, we suppress

the dependence of the coefficient ideal on the choice of the section ρ. This does

no harm in our context since the order of the coefficient ideal (which is our main

concern) depends only on V and not on ρ.

Let V = V (z) be a regular hypersurface in Spec(R) and let o be the order

of the coefficient ideal coeffV (J). Further, set w = o
c! where c is the order of the

ideal J . Then the minimum of the weighted orders ordw(f) of elements f ∈ J with

respect to the regular parameter z and the weight vector (w, 1, . . . , 1) equals c ·w.

A regular hypersurface V = V (z) in Spec(R) has weak maximal contact with J

if the order of the coefficient ideal coeffV (J) of J with respect to V is maximized

over all choices of regular hypersurfaces in Spec(R) and if for any blowup with

regular center Z = V (P ) contained in V and in the equimultiple locus of J , the

strict transform of V in Proj(⊕i≥0P i) contains all points at which the order of the

weak transform of J has remained constant.

Two cases can occur: The supremum of the orders of coeffV (J) over all V may

be infinite, in which case J is of the form J = (zc) for some regular parameter

z ∈ R, and has trivial coefficient ideal equal to 0 with respect to V = V (z).

This case is irrelevant for our investigations and will be discarded. Alternatively,

the supremum of the orders is bounded, in which case the maximum exists and

is realized by some V . Such a V can then be chosen so that its strict transform

contains all points where the order of the weak transform of J has remained

constant. If the characteristic is zero, then V can even be chosen in a way that it

has maximal contact with J .

Let D be a (not necessarily reduced) normal crossings divisor in Spec(R), and

let J ⊂ R be an ideal. A regular hypersurface V = V (z) is compatible with D and

J if it has normal crossings with D and if there is a section ρ : R/(z) ∼= Q ⊂ R of

R→ R/(z) so that the coefficient ideal K = coeffV (J) of J with respect to V and

ρ factors into K = M · I, for some ideal I of Q, where M is the principal ideal of

Q defining D ∩ V in V .

Let J be an ideal and D a normal crossings divisor for which there exists a

regular hypersurface V that has weak maximal contact with J and is compatible

with D. The residual order of such an ideal J with respect to D is defined as

residual-orderD(J) = ord(coeffV (J))− ordM = ord I,

where V = V (z) ⊂ Spec(R) is a hypersurface of weak maximal contact with J

and compatible with D, and where M is the ideal which defines D ∩ V in V and

appears in the factorization coeffV (J) = M · I. Notice that the residual order
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is independent of the choice of V . This numeral is frequently used in the proof

of resolution of singularities in characteristic zero. It is supposed to measure the

“distance” of K from being a principal monomial ideal supported by D.

A completed local blowup π : R → R′ with center Z = V (P ) is said to be

permissible with respect to J and D if the center Z of π is regular, has normal

crossings with D and if there exists a hypersurface V of weak maximal contact with

J , compatible with D, and such that Z is contained in V and in the equimultiple

loci of J and I; here I is defined through coeffV (J) = M · I as before.

The transform D′ of D with respect to J under a permissible completed local

blowup π : R→ R′ is defined as the normal crossings divisor D′ = Ds+(ordP K−
c!) · E in Spec(R′), where Ds denotes the strict transform of D and E = π−1(Z)

is the new exceptional component (cf. [EH02]). Here, c is the order of J in R, and

K is the coefficient ideal of J with respect to a hypersurface of weak maximal

contact V with J and compatible with D. The definition of D′ is independent of

the choice of the hypersurface V .

If J and D admit a regular hypersurface V having weak maximal contact with

J and compatible with D, it can be shown that there exists, for every permissible

completed local blowup π : R→ R′ under which the order of J remains constant,

a regular hypersurface U ′ in Spec(R′) which has weak maximal contact with the

weak transform J ′ of J and is compatible with D′ (cf. the proof of the proposition

below). If the characteristic is zero, then the hypersurface V in Spec(R) can be

chosen in such a way that its strict transform V ′ in Spec(R′) has these properties.

This is no longer true over fields of positive characteristic.

Regular parameters (z, x) in R are called subordinate to a permissible blowup

π, an ideal J , a normal crossings divisor D and a hypersurface V of weak maximal

contact with J and compatible with D, if V = V (z), the components of D are

supported by the hypersurfaces V (xi) of Spec(R), and if the defining ideal P of

the center Z is generated by z and xi, for i varying in a subset S of {1, . . . , n}.
Permuting the xi if necessary, we may assume that the blowup occurs in the x1-

chart. There then exist a subset T of S containing 1 and constants ti ∈ K∗, for

i ∈ T \ {1}, so that π is defined by

z → x1z,

x1 → x1,

xi → x1(xi + ti) for i ∈ T \ {1},
xi → x1xi for i ∈ S \ T ,

xi → xi for i /∈ S,

where R′ is identified with R and (z, x1, . . . , xn) denotesa regular system of pa-
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rameters in R and R′. We may further assume that either T = {1} or that for all

indices i ∈ T the inclusion V (xi) ⊂ D holds.

If the characteristic of K is zero, it is well known that for all permissible

completed local blowups π : R→ R′ under which the order of J remains constant,

ord J ′ = ordJ when passing to its weak transform J ′, the residual order does not

increase, i.e.,

residual-orderD′J
′ ≤ residual-orderDJ

holds. Over fields of positive characteristic, this is no longer true: the residual order

may increase.

§3. Results

The characterization of ideals and permissible blowups for which the residual order

increases goes as follows.

Theorem. Let R be a complete regular local noetherian ring R of dimension n+1

over an algebraically closed field K of positive characteristic p > 0. Let D be a

normal crossings divisor in Spec(R). Let be given an ideal J in R admitting a

hypersurface of weak maximal contact and compatible with D. Let π : R → R′ be

a completed local blowup of R, permissible with respect to J and D with center Z

defined by the ideal P of R. Denote by J ′ the weak transform of J in R′, and by

D′ the transform of D in Spec(R′) with respect to J .

Let V in Spec(R) be a hypersurface of weak maximal contact with J and com-

patible with D such that Z is contained in V and in the equimultiple loci of J and

I, where I appears in the factorization coeffV (J) = M · I, with M the ideal in V

defining D∩V . Choose regular parameters (z, x) = (z, x1, . . . , xn) of R subordinate

to π, J , D and V , and let T ⊂ S ⊂ {1, . . . , n} and ti ∈ K∗ be as above.

Assume that J ′ has the same order as J but that its residual order with respect

to D′ is larger than the residual order of J with respect to D. Then the following

conditions must be satisfied.

(1) The order c of J is a multiple c = m · pe of a pth power, with m ≥ 1 not

divisible by p and e ≥ 1.

(2) The order o of the coefficient ideal K of J with respect to V is a multiple

o = w · c! of c!, with w ≥ 2.

(3) There exists a homogeneous, non-peth-power polynomial F in x1, . . . , xn of

degree w · pe so that the weighted initial form inw(f) with respect to (z, x) and

the weights (w, 1, . . . , 1) of every element f ∈ J of minimal weighted order c ·w
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is the mth power of a purely inseparable polynomial, say

inw(f) = α · (zp
e

+ F (x))m,

for some nonzero constant α ∈ K∗.
(4) Factorize F into F (x) = xr · G(x) with ri = ord(xi) F , for i ∈ T , and G a

homogeneous polynomial of degree v = degF −
∑
i∈T ri. If QT denotes the

ideal of K[[x1, . . . , xn]] generated by xi − tix1, for i ∈ T \ {1}, and xi, for

i 6∈ T , then

ord mod pe

QT
F > v,

where ord mod pe

QT
F denotes the maximum of the orders ordQT

(F + Hpe) over

all polynomials H in x1, . . . , xn.

The inequality ord mod pe

QT
F > v from (4) implies the following conditions (5)

to (9). Let ` < e be the largest integer so that F is a p`th power, and denote by b

the number of exponents ri, for i ∈ T , not congruent to 0 modulo p`+1.

(5) Denote by tt the vector in Kn of components ti for i ∈ T \{1}, and 0 otherwise.

The polynomial G(x) of the factorization F (x) = xr · G(x) has, up to peth

powers, a unique form,

G((1, x2, . . . , xn) + tt) =

⌊ ∏
i∈T\{1}

(xi + ti)
−ri ·Npe(x2, . . . , xn)

⌋
v

for some polynomial N(x2, . . . , xn). Here, the product
∏
i∈T\{1}(xi + ti)

−ri is

considered as a power series, and b−cv denotes the v-jet of a power series.

(6) The residues 0 ≤ ri < p`+1 of ri modulo p`+1 satisfy the arithmetic inequality∑
i∈T

ri ≤ (b− 1) · p`+1.

Equivalently, one has ∑
i∈T

ri + v 6= b · p`+1.

(7) For j 6∈ T , the variables xj appear only as peth powers in F (x), say

F (x) ∈ K[xp
`

i , x
pe

j , i ∈ T, j 6∈ T ].

(8) For i ∈ T , the p`th logarithmic Hasse derivatives of F (x) with respect to xi
are of the form

xp
`

i · ∂xp`

i

F (x) = xr ·Hi(x),

where Hi is a polynomial in (xj − tjx1)p
`

and xp
e

k , for j ∈ T \ {1} and k 6∈ T .
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(9) The increase of the residual order is bounded by

residual-orderD′J
′ ≤ residual-orderDJ + c!

p .

Comments. The statements of the theorem crystallize a broader background

which will be explained below.

(a) The theorem only tells us something about the exceptional multiplicities and

the (weighted) tangent cone of the ideal J . It does not make any statement

about the higher-order terms of the elements of J .

(b) The multiplicity of the new exceptional component in D′ equals ordP K − c!
and is hence a multiple of c!. Let x1 be the parameter defining this component.

Then the center Z ′ = V (z, x1) in Spec(R′) is contained in the equimultiple

locus of J ′, has normal crossings with D′ and can be blown up until the

exceptional multiplicity of this component has dropped to 0.

(c) The residual order is a questionable resolution invariant as is exhibited by

an example of an infinite sequence of permissible blowups where the residual

order tends to infinity ([HP19]). In this sequence, however, the centers are

not chosen of maximal dimension, so this is not yet a counterexample to the

resolution of singularities in positive characteristic.

(d) The increase of the residual order can only happen if under the blowup at

least two components of D are lost when passing to the reference point a′ in

the new exceptional component.

(e) The increase of the residual order represents a serious obstacle for trying to

transfer the proof of resolution of singularities in characteristic zero to positive

characteristic. For surfaces, it can still be used, but has to be modified slightly

so as to perform appropriately under blowup; see [HW14, HP16]. Already for

threefolds the situation is unclear and no efficient resolution invariant (for

embedded resolution) seems to be known (for the non-embedded case, see

[Abh66, CP08, CP09, Cut09]).

(f) For a fixed prime number p, the arithmetic inequality for the residues of the

multiplicities ri in assertion (6) of the theorem always holds when T contains

sufficiently many indices i with ri 6≡ p`+1.

(g) For fixed numbers n, p, e and ` as in the theorem, a homogeneous polynomial

F (x) = xr · G(x) of degree divisible by pe, but not a peth power, defines

via f = zp
e

+ F (x) a weighted homogeneous hypersurface singularity whose

residual order increases under blowup if and only ifG(x) is of the form specified

in assertion (5) and the multiplicities ri fulfill the arithmetic inequality in

assertion (6) of the theorem.
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(h) Assertion (2) and the bound in (9) are known to Moh in the case of a purely

inseparable hypersurface singularity ([Moh87]).

§4. Auxiliary results

The proof of the theorem will rely on the following more technical result.

Proposition. In the situation of the theorem, there exists an automorphism of R

sending z onto u = z − q, for some q ∈ Q of order ord q ≥ o
c! > 1, and inducing

the identity on Q, so that U = V (u) has again weak maximal contact with J (but

may no longer be compatible with D), and so that the following two conditions are

satisfied.

(1) The strict transform U ′ of U has weak maximal contact with J ′ and is com-

patible with D′.

(2) Factorize the coefficient ideal K ′1 = coeffU ′(J
′) of J ′ with respect to U ′ and

σ′1 : R′/(u′) ∼= Q ⊂ R′ into K ′1 = M ′1 · I ′1 with M ′1 the principal monomial ideal

defining D′ ∩U ′ in U ′. Then the residual order ord I ′1 of J ′ with respect to D′

is bounded by

ord I < ord I ′1 ≤ ordQT
in(h)−

∑
i 6∈T

si,

for any element h of minimal order o of the coefficient ideal K1 = coeffU (J)

of J with respect to U and the ring inclusion σ1 : R/(u) ∼= Q ⊂ R, and where

si = ord(xi)D.

To show this, we need two lemmata. Lemma 1 will clarify how the orders of

the coefficients fi in the expansion f =
∑
i≥0 fiz

i are related to the order of the

coefficient ideal. In Lemma 2 we will investigate the effect of coordinate changes

u = z − q with q ∈ K[[x]] on the coefficient ideal. In particular, we will see that

if the coordinate change increases the order of the coefficient ideal with respect to

V (z), then the element q has to be of a very specific form.

Lemma 1. Let R be the power series ring K[[z, x]] with x = (x1, . . . , xn) for

some field K. Denote the maximal ideal of R by mR. Let J ⊂ R be an ideal of

order ord J = c. Let each element f ∈ J have the expansion f =
∑
i≥0 fiz

i with

fi ∈ K[[x]].

Set K = coeffV (J) for V = V (z) and a section ρ : R/(z) ∼= Q ⊂ R of

R→ R/(z). Define o = ordK and w = o
c! .

Then the following statements hold:



Characterizing the Increase of the Residual Order 11

(1) The order of K can be expressed as

o = min
f∈J

min
i<c

c!

c− i
ord fi.

Consequently, for all elements f ∈ J and indices i < c, the inequality

ord fi ≥ (c− i)w

holds.

(2) o ≥ c!.
(3) o > c! holds if and only if J ≡ (zc) modulo mc+1

R .

Proof. Immediate from the definition of the coefficient ideal.

Lemma 2. Let R be the power series ring K[[z, x]] with x = (x1, . . . , xn) where

K is a field of characteristic p > 0. Consider a change of coordinates u = z − q
where q ∈ K[x] is a homogeneous polynomial, and define V = V (z), U = V (u). Let

J ⊂ R be any ideal of order ord J = c and let pe the largest pth power dividing c.

Let K = coeffV (J) and K1 = coeffU (J), and set o = ordK, o1 = ordK1 and

w = o
c! . The following statements hold:

(1) If deg q ≥ w, then o1 ≥ o.

(2) If deg q < w and there exists an element f ∈ J that is z-regular of order c,

then o1 = c! · deg q < o.

(3) Let 1 ≤ i ≤ n be an index. If ord(xi) q ≥ 1
c! ord(xi)K, then ord(xi)K1 ≥

ord(xi)K.

(4) Let f ∈ J be an element that is z-regular of order c. Let f have the expansion

f =
∑
i≥0 fiz

i with fi ∈ K[[x]]. If o1 > o holds, then deg q = w and q fulfills

qp
e

= λ · in(fc−pe)

for a nonzero constant λ ∈ K∗.

Proof. Let each element f ∈ J have expansions f =
∑
i≥0 fiz

i and f =
∑
i≥0 f̃iu

i

with fi, f̃i ∈ K[[x]]. Then

f̃i =
∑
k≥i

(
k

i

)
fkq

k−i.

Notice that an element f is z-regular of order c if and only if the coefficient fc is

a unit.

Statements (1), (2) and (3) can be verified directly by using the formula for

f̃i and Lemma 1(1).
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To prove statement (4), let f ∈ J be z-regular of order c. If deg q > w, it

is straightforward to show that o1 = o holds. By statement (2) this implies that

deg q = w has to hold.

Assume now that there exists an index c − pe < i < c such that ord fi =

(c − i)w. Let i be maximal with this property. Notice that
(
c
i

)
≡ 0 (mod p) by

Lucas’ theorem on binomial coefficients in characteristic p > 0. Using the form

of f̃i, the maximality of i and the fact that
(
c
i

)
≡ 0 (mod p), it follows that

ord f̃i = (c − i)w. Consequently, o1 ≤ o holds by Lemma 1(1), contradicting the

assumption.

Hence, ord fi > (c − i)w holds for all indices c − pe < i < c. If we had

ord fc−pe > pew, then

in(f̃c−pe) =

(
c

pe

)
fc(0)qp

e

.

Since
(
c
pe

)
6≡ 0 (mod p) by Lucas’ theorem, this implies that ord f̃c−pe = pew and

hence, o1 ≤ o by Lemma 1(1), again a contradiction.

Thus, ord fc−pe = pew. Since o1 > o, it follows that ord f̃c−pe > pew. This

gives

in(fc−pe) +

(
c

pe

)
fc(0)qp

e

= 0,

which proves the assertion.

Proof of the proposition. Define parameters y = (y1, . . . , yn) by setting

yi =

{
xi − tix1 for i ∈ T \ {1},
xi otherwise.

Notice that the ideal P is generated by the parameters z and yi for i ∈ S. Also,

QT = (y2, . . . , yn). Further, the map π : R → R′ has the following simple form

with respect to (z, y): z → x1z, y1 → x1, yi → x1xi for i ∈ S \ {1} and yi → xi for

i /∈ S. One also says that the blowup map π : R→ R′ is monomial with respect to

the parameters (z, y). Monomial blowup maps have the advantage that they make

calculations in coordinates particularly easy.

We will begin with assertion (1). To this end, let us first verify that J ≡ (zc)

modulo mc+1
R .

Recall that the strict transform V ′ = V (z) of V in Spec(R′) is nonempty since

ord J ′ = ordJ holds and V has weak maximal contact with J . Further, it is easy

to see that the regular hypersurface V ′ is compatible with D′.

Recall that the center of blowup Z is contained in the equimultiple locus of

I. Thus, it is easy to see that the ideal I ′ in the factorization coeffV ′(J
′) = M ′ · I ′

fulfills ord I ′ ≤ ord I. Since we assumed that the residual order increases under



Characterizing the Increase of the Residual Order 13

the local blowup π, we conclude from this that V ′ does not have weak maximal

contact with J ′.

Assume now that J 6≡ (zc) modulo mc+1
R . Since V has weak maximal contact

with J , this implies by Lemma 1(3) that ord coeff Ṽ (J) = c! holds for all regular

hypersurfaces Ṽ ⊂ Spec(R). Consequently, by Lemma 1(3) there is no regular

parameter u ∈ R for which J ≡ (uc) modulo mc+1
R holds. It is straightforward to

verify that this implies that there is also no regular parameter ũ ∈ R′ for which

J ′ ≡ (ũc) modulo mc+1
R′ holds. This would imply by Lemma 1 that any regular

hypersurface Ũ ⊂ Spec(R′) has weak maximal contact with J ′. Since we already

know that V ′ does not have weak maximal contact with J ′, this is a contradiction.

Hence, J ≡ (zc) modulo mc+1
R holds.

It is immediate to see that this implies the existence of an element f ∈ J

which is z-regular of order c. Set f ′ = x−c1 π(f) ∈ J ′. Then the element f ′ is also

z-regular of order c. Let these elements have the expansions f =
∑
i≥0 fiz

i and

f ′ =
∑
i≥0 f

′
iz
i with fi, f

′
i ∈ K[[x]].

Let Ũ = V (ũ) ⊂ Spec(R′) be a regular hypersurface which has weak maximal

contact with J ′. Set K̃ = coeffŨ (J ′). If the element ũ ∈ R′ is not z-regular, then it

is straightforward to verify with Lemma 1(1) and using the fact that f is z-regular

of order c that ord K̃ = c!. This contradicts the fact that V ′ does not have weak

maximal contact with J ′. Thus, we may assume that ũ = z − g̃ for an element

g̃ ∈ K[[x]].

Set K ′ = coeffV ′(J
′). By Lemma 2 we know that ord g̃ = 1

c! ordK ′. Set

g = in(g̃). Further, define u′ = z−g, U ′ = V (u′) ⊂ Spec(R′) and K ′1 = coeffU ′(J
′).

Then it is clear by Lemma 2 that the chain of inequalities

ord K̃ ≥ ordK ′1 > ordK ′

holds. We know by Lemma 2(4) that

gp
e

= λ · in(f ′c−pe)

for some nonzero constant λ, where pe is the largest pth power dividing c. Notice

that f ′c−pe = x−p
e

1 π(fc−pe).

It is clear that for all indices i = 1, . . . , n the inequality

ord(xi) g ≥
1

pe
ord(xi) f

′
c−pe ≥

1

c!
ord(xi)K

′

holds. Since V ′ = V (z) is compatible with D′, this implies by Lemma 2(3) that

U ′ is also compatible with D′.

Since the map π : R→ R′ is monomial with respect to the parameters (z, y),

it is straightforward to verify that there exists an element q ∈ R that fulfills
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g = x−11 π(q) and is of the form

qp
e

= λ · inσ(fc−pe)

where inσ(fc−pe) denotes the weighted initial form of fc−pe with respect to the

weights σ(yi) = 2 for i ∈ S \{1} and σ(yi) = 1 for all other indices i. Set u = z−q.
Then

π(u) = x1(z − g) = x1u
′.

Hence, the hypersurface U ′ is the strict transform of the hypersurface U = V (u).

Set K1 = coeffU (J).

We will now show that U has weak maximal contact with J and K1 has a

factorization

K1 =
(∏
i/∈T

xsii

)
· I1

for some ideal I1 of Q. Since qp
e

= λ · inσ(fc−pe), it is clear that the inequality

ord q ≥ 1

pe
ord fc−pe ≥

o

c!

holds, as well as, for all indices i /∈ T , the inequalities

ord(xi) q ≥
1

pe
ord(xi) fc−pe ≥

1

c!
ord(xi)K

(since xi = yi for i /∈ T ). By Lemma 2(1) and (3) this implies that

ordK1 ≥ ordK = o

holds and that K1 has the claimed factorization. Since the hypersurface V already

had weak maximal contact with J , we must have ordK1 = o. Hence, also U has

weak maximal contact with J .

We now consider two cases. If the hypersurface U ′ has weak maximal contact

with J ′, we are done. On the other hand, if ord K̃ > ordK ′1, we may replace g̃ by

g̃ − g and repeat the whole argument. Since the order of K̃ is finite, we can thus

construct hypersurfaces U and U ′ with the claimed properties after finitely many

iterations.

To prove assertion (2), we rewrite the claimed inequality so as to allow a

calculation in coordinates. Let h ∈ K1 be an element of minimal order o. Define

for a tuple γ = (γ1, . . . , γn) ∈ Nn the number

|γ|S =
∑
i∈S

γi.
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Set s = (s1, . . . , sn). Since U ′ is compatible with D′, we know that K ′1 is of the

form

K ′1 =
(
x
ord I+|s|S−c!
1

∏
i/∈T

xsii

)
· I ′1.

It is straightforward that x−c!1 π(h) ∈ K ′1. This implies that

ord I ′1 = ordK ′1 − (ord I + |s|S − c!)−
∑
i/∈T

si

≤ ordπ(h)− ord I − |s|S −
∑
i/∈T

si.

Hence, it remains to verify that the inequality

ordπ(h) ≤ ordQT
in(h) + ord I + |s|S

holds. Let h have the following power series expansion with respect to y:

h =
∑
α∈Nn

cαy
α.

There exists a multi-index β ∈ Nn such that cβ 6= 0, |β| = o and∑
i≥2

βi = ordQT
in(h).

Since K1 = coeffU (J) =
(∏

i/∈T x
si
i

)
·I1, we know that βi ≥ si for all indices i /∈ T .

Consequently,

|β|S = o−
∑
i/∈S

βi ≤ o−
∑
i/∈S

si = ord I + |s|S .

Further,

π(h) =
∑
α∈Nn

cαx
|α|S
1

∏
i≥2

xαi
i .

From this we conclude that

ordπ(h) ≤ |β|S +
∑
i≥2

βj ≤ ordQT
in(h) + ord I + |s|S .

This proves the claimed inequality.

§5. Proof of the theorem

Using the bound for the order of I ′1 established in the proposition, we can now

prove the theorem without considering the coefficient ideals of the weak transform

J ′ of J . Instead, we will directly work in R with the coefficient ideals K and K1

of J .
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Proof of the theorem. Let q, u, K1 and si be defined as in the proposition. Set

w = o
c! . Let pe be the biggest pth power dividing c and set m = c

pe . Notice that

m ≡
(
c
pe

)
(mod p). Recall that ord q ≥ w > 1.

We begin with assertions (1), (2) and (3). Let f ∈ J be an element of minimal

weighted order cw. Let the weighted initial form of f have the expansion inw(f) =∑
i≥0 Fiz

i with respect to the coordinates (x, z), with Fi ∈ K[x]. Hence, either

Fi = 0 or Fi is a homogeneous polynomial of degree degFi = (c − i)w for all

indices i. In particular, Fi is 0 for all indices i > c.

Let i < c be an index with Fi 6= 0. Due to the factorization K = M · I, the

element Fi has a factorization

Fi =

n∏
j=1

x
mj

j ·Gi

with mj ≥ c−i
c! sj for some polynomial Gi. Consequently,

ordQT
Fi = ordQT

∏
j∈T

x
mj

j︸ ︷︷ ︸
=0

+ ordQT

∏
j /∈T

x
mj

j ·Gi

≤ deg
∏
j /∈T

x
mj

j ·Gi

≤ c− i
c!

(
ord I +

∑
j /∈T

sj

)
.

Set H = in(q). Denote by inw,(u,x)(f) the weighted initial form of f with respect to

the parameters (u, x) and the weight vector (w, 1, . . . , 1). Let this weighted initial

form have the expansion inw,(u,x)(f) =
∑
i≥0 F̃iu

i with F̃i ∈ K[x]. If ord q = w,

then

F̃i =
∑
i≤k≤c

(
k

i

)
FkH

k−i.

On the other hand, if ord q > w, then F̃i = Fi. Notice that if F̃i 6= 0 holds for an

index i < c, then F̃
c!

c−i

i is the initial form of an element of minimal order of K1.

Hence, we know by the proposition and the basic assumption ord I ′1 > ord I that

(∗) ordQT
F̃i ≥

c− i
c!

(
ord I ′1 +

∑
j /∈T

sj

)
>
c− i
c!

(
ord I +

∑
j /∈T

sj

)
.

Consequently, for all indices i < c, either Fi = 0 or F̃i 6= Fi holds.

This implies that ord q = w. Consequently, w is an integer w ≥ 2 and we have

proved (2).
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We show that Fc 6= 0. Assume the contrary, and let i < c be maximal with

Fi 6= 0. Then F̃i = Fi would hold by the formula for F̃i, a contradiction. This

shows Fc 6= 0. Thus, f is z-regular of order c. After multiplication with a constant,

we may assume that Fc = 1.

Assume that there exists an index i < c that is not divisible by pe such that

Fi 6= 0. Let i be maximal with this property. Then it follows that

F̃i = Fi +
∑
i<k≤c
pe|k

(
k

i

)
︸︷︷︸
≡0

FkH
k−i +

∑
i<k<c
pe-k

(
k

i

)
Fk︸︷︷︸
=0

Hk−i = Fi,

a contradiction. Therefore Fi is 0 for all indices i that are not divisible by pe. Set

F =

(
c

pe

)−1
Fc−pe

and recall that
(
c
pe

)
6≡ 0 (mod p) by Lucas’ theorem. Since F̃c−pe =

(
c
pe

)
(F +Hpe),

we get from (∗) the inequality

(∗∗) ordQT
(F +Hpe) >

pe

c!

(
ord I +

∑
j /∈T

sj

)
.

Next we establish for all indices i < m = c
pe the equality

Fipe =

(
m

i

)
Fm−i.

Notice that the equality holds by definition for i = m − 1. Let i < m − 1 be

maximal with Fipe 6=
(
m
i

)
Fm−i. Then

F̃ipe = Fipe +
∑

i<k≤m

(
kpe

ipe

)
︸ ︷︷ ︸
≡(k

i)

FkpeH
pe(k−i)

= Fipe +
∑

i<k≤m

(
k

i

)(
m

k

)
︸ ︷︷ ︸
=(m

i )(m−i
k−i)

Fm−kHpe(k−i)

= Fipe −
(
m

i

)
Fm−i +

(
m

i

)
(F +Hpe)m−i.

Together with the inequalities (∗) and (∗∗), this implies that

ordQT

(
Fipe −

(
m

i

)
Fm−i

)
> (m− i)p

e

c!

(
ord I +

∑
j /∈T

sj

)
.
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But the factorization K = M · I implies that

ordxj

(
Fipe −

(
m

i

)
Fm−i

)
≥ (m− i)p

e

c!
sj

holds for all indices j ∈ T . It follows that

ordQT

(
Fipe −

(
m

i

)
Fm−i

)
≤ ord

(
Fipe −

(
m

i

)
Fm−i

)
− (m− i)p

e

c!

∑
j∈T

sj

= (m− i)p
e

c!

(
ord I +

∑
j /∈T

sj

)
,

which contradicts the above inequality. Therefore

inw(f) = (zp
e

+ F )m

holds.

Now let h ∈ J be another element of weighted order cw. Let h have the

expansion h =
∑
i≥0 hiz

i. Using the same argument as before, we know that h is

z-regular of order c. Hence, hc is a unit. Consider the element h − hc(0) · f ∈ J .

Since this element is not z-regular of order c, we know that its weighted order is

strictly larger than cw. This implies that

inw(h) = hc(0) · inw(f) = hc(0) · (zp
e

+ F )m.

Assume that F is a peth power. Set z1 = z + F
1
pe and let V1 be the regular

hypersurface V1 = V (z1) in Spec(R). Then it is straightforward to verify that

ord coeffV1
(J) > o. Thus, the hypersurface V would not have had weak maximal

contact with J , a contradiction. So assertion (3) is shown. But as F is not a peth

power we must have e ≥ 1, thus also proving (1).

We can now easily prove assertion (4). Notice that

v = degG ≤ pe

c!

(
ord I +

∑
j /∈T

sj

)
.

Using inequality (∗∗), this implies that

ord mod pe

QT
F ≥ ordQT

(F +Hpe) > v.

This proves (4).

To prove assertion (5), rewrite (4) as

ord(x2,...,xn) F ((x1, . . . , xn) + ttx1) +H((x1, . . . , xn) + ttx1)p
e

> v.
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Setting x1 = 1, this is equivalent to

ordF ((1, x2, . . . , xn) + tt) +H((1, x2, . . . , xn) + tt)p
e

> v.

Hence,

F ((1, x2, . . . , xn) + tt) +H((1, x2, . . . , xn) + tt)p
e

∈ (x2, . . . , xn)v+1.

Set N = H((1, x2, . . . , xn) + tt). Since F = xr ·G, we get

G((1, x2, . . . , xn) + tt)−
∏

i∈T\{1}

(xi + ti)
−ri ·Npe(x2, . . . , xn) ∈ (x2, . . . , xn)v+1.

But since degG((1, x2, . . . , xn) + tt) ≤ v, this implies

G((1, x2, . . . , xn) + tt) =

⌊ ∏
i∈T\{1}

(xi + ti)
−ri ·Npe(x2, . . . , xn)

⌋
v

as claimed.

We proceed with assertion (6). First we verify that the two inequalities in the

statement are equivalent. By definition of v, we have that degF =
∑
i∈T ri + v.

Further, we know that degF is a multiple of pe. Hence, it also a multiple of p`+1.

By definition of the number b, the residues ri and v satisfy the inequalities∑
i∈T

ri < b · p`+1

and ∑
i∈T

ri + v ≤ b · p`+1.

Since 0 ≤ v < p`+1, the following two are equivalent:∑
i∈T

ri > (b− 1) · p`+1

and ∑
i∈T

ri + v = b · p`+1.

This proves that the two inequalities in assertion (6) are indeed equivalent. Now

assume that they are violated and hence, the equality∑
i∈T

ri + v = b · p`+1

holds. Computation gives∏
i∈T\{1}

(xi + ti)
−ri =

∏
i∈T\{1}

(xi + ti)
−ri · Lp

`+1

(x2, . . . , xn)
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for some element L ∈ K[[x2, . . . , xn]]. Notice that

deg
∏

i∈T\{1}

(xi + ti)
−ri ≤

∑
i∈T
−ri = b · p`+1 −

∑
i∈T

ri = v.

By (5) this implies that

G((1, x2, . . . , xn) + tt) =
∏

i∈T\{1}

(xi + ti)
−ri · Ñp`+1

(x2, . . . , xn)

for some polynomial Ñ . Consequently,∏
i∈T\{1}

(xi + ti)
ri ·G((1, x2, . . . , xn) + tt)

is a p`+1th power. Since the degree of F is divisible by p`+1, also F = xr ·G is a

p`+1th power, which contradicts the minimality of p` and proves (6).

It remains to prove assertions (7), (8) and (9). Let k be an integer in the range

0 ≤ k < e. Let i ∈ {1, . . . , n} be an index and assume that

∂
xpk

i

(F ) 6= 0.

Notice that ∂
xpk

i

(Hpe) = 0. Consequently,

ordQT
F̃c−pe = ordQT

(F +Hpe) ≤ ordQT
∂
xpk

i

(F ) + pk.

If i ∈ T , then

∂
xpk

i

(F ) = xri−p
k

i

∏
j∈T
j 6=i

x
rj
j Hi,k

holds for a homogeneous polynomial Hi,k ∈ K[x] with degHi,k = degG = v. On

the other hand, if i /∈ T , then

∂
xpk

i

(F ) =
∏
j∈T

x
rj
j Hi,k

for a homogeneous polynomial Hi,k ∈ K[x] with degHi,k = v − pk. Together,

ordQT
F̃c−pe ≤ ordQT

Hi,k + pk ≤ degHi,k + pk = v + εi,k

where

εi,k =

{
pk if i ∈ T,
0 if i /∈ T.
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This proves, together with the first inequality in (∗), the following inequalities:

ord I ′1 ≤
c!

pe
ordQT

F̃c−pe −
∑
i 6∈T

si

≤ c!

pe
(v + εi,k)−

∑
i6∈T

si

≤ ord I +
c!

pe
εi,k.

If i /∈ T , this implies that ord I ′1 ≤ ord I. Therefore,

∂
xpk

i

(F ) = 0

holds for all indices i /∈ T and all k ≥ 0 with pk < pe. Thus, the variables xi with

i /∈ T only appear as peth powers in F . This proves (7).

Recall that ` was chosen maximal such that F is a p`th power. It is clear that

this implies the existence of an index i ∈ T such that ∂
xp`

i

(F ) 6= 0. The inequality

above shows

ord I ′1 ≤ ord I +
c!

pe
p` ≤ ord I +

c!

p
,

which proves (9).

To prove assertion (8), fix an index i ∈ T . Set Hi = Hi,`. Notice that the

equality

xp
`

i · ∂xp`

i

(F ) = xr ·Hi

holds by definition of Hi. Further, we know that Hi is a p`th power since F is a p`th

power by assumption. Hence, the assertion that Hi is a polynomial in (xj− tjx1)p
`

and xp
e

k , for j ∈ T \ {1} and k 6∈ T , is equivalent to the equality

ordQT
Hi = degHi.

So assume that ordQT
Hi < degHi holds. Since Hi is a p`th power, this implies

that

ordQT
Hi ≤ degHi − p`.

Plugging this into the chain of inequalities which we used to prove (9), we get

ordQT
F̃c−pe ≤ ordQT

Hi + p` ≤ degHi = v

and consequently,

ord I ′1 ≤
c!

pe
ordQT

F̃c−pe −
∑
i 6∈T

si ≤
c!

pe
v −

∑
i6∈T

si ≤ ord I.
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But this contradicts our initial assumption that ord I ′1 > ord I. This gives (8) and

ends the proof of the theorem.
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Math. J. 63 (1991), 57–64. Zbl 0752.14011 MR 1106937

[CP08] V. Cossart and O. Piltant, Resolution of singularities of threefolds in positive charac-
teristic. I. Reduction to local uniformization on Artin-Schreier and purely inseparable
coverings, J. Algebra 320 (2008), 1051–1082. Zbl 1159.14009 MR 2427629

[CP09] V. Cossart and O. Piltant, Resolution of singularities of threefolds in positive charac-
teristic. II, J. Algebra 321 (2009), 1836–1976. Zbl 1173.14012 MR 2494751

[Cut04] S. D. Cutkosky, Resolution of singularities, American Mathematical Society, Provi-
dence, RI, 2004. Zbl 1076.14005 MR 2058431

[Cut09] S. D. Cutkosky, Resolution of singularities for 3-folds in positive characteristic, Amer.
J. Math. 131 (2009), 59–127. Zbl 1170.14011 MR 2488485

[Cut11] S. D. Cutkosky, A skeleton key to Abhyankar’s proof of embedded resolution of charac-
teristic P surfaces, Asian J. Math. 15 (2011), 369–416. Zbl 1264.14023 MR 2838213

[EH02] S. Encinas and H. Hauser, Strong resolution of singularities in characteristic zero, Com-
ment. Math. Helv. 77 (2002), 821–845. Zbl 1059.14022 MR 1949115
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